81 research outputs found

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    CMOS-compatible silicon nitride spectrometers for lab-on-a-chip spectral sensing

    Get PDF
    We report on miniaturized optical spectrometers integrated on a photonic integrated circuit (PIC) platform based on silicon nitride waveguides and fabricated in a CMOS-compatible approach. As compared to a silicon on -insulator PIC-platform, the usage of silicon nitride allows for operation in the visible and near infrared. Furthermore, the moderately high refractive index contrast in silicon -nitride photonic wire waveguides provides a valuable compromise between compactness, optical loss and sensitivity to phase error. Three generic types of on -chip spectrometers are discussed: the arrayed waveguide grating (AWG) spectrometer, the echelle grating or planar concave grating (PCG) spectrometer and the stationary Fourier transform spectrometer (FTS) spectrometer. Both the design as well as experimental results are presented and discussed. For the FTS spectrometer a specific design is described in detail leading to an ultra -small (0.1 mm2) footprint device with a resolution of 1 nm and a spectral range of 100nm. Examples are given of the usage of these spectrometers in refractive index biosensing, absorption spectroscopy and Raman spectroscopy

    Chemical and isotopic snow variability in East Antarctica along the 2001/02 ITASE traverse

    Get PDF
    AbstractAs part of the International Trans-Antarctic Scientific Expedition (ITASE) project, a traverse was carried out from November 2001 to January 2002 through Terre Adélie, George V Land, Oates Land and northern Victoria Land, for a total length of about 1875 km. The research goal is to determine the latitudinal and longitudinal variability of physical, chemical and isotopic parameters along three transects: one west–east transect (WE), following the 2150m contour line (about 400 km inland of the Adélie, George V and Oates coasts), and two north–south transects (inland Terre Adélie and Oates Coast–Talos Dome–Victoria Land). The intersection between the WE and Oates Coast–Victoria Land transects is in the Talos Dome area. Along the traverse, eight 2 m deep snow pits were dug and sampled with a 2.5 cm depth resolution. For spatial variability, 1 m deep integrated samples were collected every 5 km (363 sampling sites). In the snow-pit stratigraphy, pronounced annual cycles, with summer maxima, were observed for nssSO42–, MSA, NO3– and H2O2. The seasonality of these chemical trace species was used in combination with stable-isotope stratigraphy to derive reliable and temporally representative snow-accumulation rates. The study of chemical, isotopic and accumulation-rate variability allowed the identification of a distribution pattern which is controlled not only by altitude and distance from the sea, but also by the complex circulation of air masses in the study area. In particular, although the Talos Dome area is almost equidistant from the Southern Ocean and the Ross Sea, local atmospheric circulation is such that the area is strongly affected only by the Ross Sea. Moreover, we observed a decrease in concentration of aerosol components in the central portion of the WE transect and in the southern portion of the Talos Dome transect; this decrease was linked to the higher stability of atmospheric pressure due to the channelling of katabatic winds

    Eleven-year experience with the avidin-biotin pretargeting system in glioblastoma: Toxicity, efficacy and survival

    Get PDF
    Background: The 3-step avidin-biotin pretargeting approach is applied in patients with recurrent glioblastoma (GBM), using biotinylated anti-tenascin monoclonal antibody as the first step of pretargeting followed by avidin and 90Ybiotin. Methods: The present study reviews objective response and overall survival rates in 502 glioblastoma patients treated with 3-step radioimmunotherapy in our institute from December 1994 to December 2005. Patients underwent standard treatment before receiving Pretargeted Antibody-Guided Radionuclide Therapy with 90Y-biotin (PAGRIT ®). Results: Of the 502 patients, 272 (54%) were evaluable for response and 375 (75%) for overall survival. 174 patients (64%) continued to progress after PAGRIT ®, 77 (28%) obtained disease stabilization, and 21 (8%) showed objective tumor regression. Survival of the 375 evaluable patients was 98.4% at 6 months, 79.2% at 12 months, 51.7% at 18 months, and 30.7% at 24 months after the first cycle of PAGRIT ®. All 375 received 3-step PAGRIT ® at recurrence of GBM. The median survival time from diagnosis was 19 months. Conclusion: The results from this retrospective analysis suggest that 90Y-biotin PAGRIT ® interferes with the progression of glioblastoma, prolonging survival in a larger number of patients. Our analysis forms the basis for further prospective trials, where radioimmunotherapy, which is known to be more effective in minimal residual disease, could be offered immediately after surgery. © Grana et al.; Licensee Bentham Open

    Challenges in scaling of CMOS devices towards 65 nm node, Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF
    The current trend in scaling transistor gate length below 60 nm is posing great challenges both related to process technology and circuit/system design. From the process technology point of view it is becoming increasingly difficult to continue scaling in traditional way due to fundamental limitations like resolution, quantum effects or random fluctuations. In turn, this has an important impact on electricaldevice specifications especially leakage current and the circuit power dissipation

    Integrated Heart - Coupling multiscale and multiphysics models for the simulation of the cardiac function

    Get PDF
    Mathematical modelling of the human heart and its function can expand our understanding of various cardiac diseases, which remain the most common cause of death in the developed world. Like other physiological systems, the heart can be understood as a complex multiscale system involving interacting phenomena at the molecular, cellular, tissue, and organ levels. This article addresses the numerical modelling of many aspects of heart function, including the interaction of the cardiac electrophysiology system with contractile muscle tissue, the sub-cellular activation-contraction mechanisms, as well as the hemodynamics inside the heart chambers. Resolution of each of these sub-systems requires separate mathematical analysis and specially developed numerical algorithms, which we review in detail. By using specific sub-systems as examples, we also look at systemic stability, and explain for example how physiological concepts such as microscopic force generation in cardiac muscle cells, translate to coupled systems of differential equations, and how their stability properties influence the choice of numerical coupling algorithms. Several numerical examples illustrate three fundamental challenges of developing multiphysics and multiscale numerical models for simulating heart function, namely: (i) the correct upscaling from single-cell models to the entire cardiac muscle, (ii) the proper coupling of electrophysiology and tissue mechanics to simulate electromechanical feedback, and (iii) the stable simulation of ventricular hemodynamics during rapid valve opening and closure

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients
    corecore